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The energy expression and its derivatives have been derived in the paired 
orbital (PO) method. Several relations have been derived for the values of  
the basic functions at the Har t ree-Fock limit. These relations permit to draw 
conclusions about the behavior of  the energy expression as a function of the 
nonlinear parameters around this limit point and it shows that one can expect 
an improvement  in energy as compared to the Har t ree-Fock value using the 
nonlinear parameters as variational parameters.  
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1. Introduction 

The paired orbital method (PO) [1, 2] is a variant of  the different orbitals for 
different spins (DODS) approach,  introduced by L6wdin [3]. It can be considered 
as a generalization of the alternant molecular orbital (AMO) method [4-6]. In 
the AMO method one uses the alternancy symmetry [7, 8], the PO method is 
valid for any system. The general philosophy of the method was presented in a 
previous paper  [2]. 
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The goal of the present paper is to consider the energy expression and its 
derivatives with respect to the nonlinear parameters. The derivatives of the energy 
are needed when we minimize the energy with respect to these parameters using 
standard optimization techniques which require analytical expressions for the 
first and second derivatives of the energy. 

After an outline of the basis of the PO method the general energy expression is 
considered. Next the derivatives are presented and the derivatives of the symmetric 
sums are obtained. The latter play a central part in these expressions. These 
quantities are evaluated explicitly for the Hartree-Fock limit (single determinant 
with doubly occupied orbitals). The knowledge of these quantities allows to draw 
conclusions about the behavior of the energy as a function of the nonlinear 
parameters around the Hartree-Fock limit (Taylor expansion of the energy). 

2. The PO metholl 

The wavefunction is of the DODS form: 

= NMd~Osa(1) . . .  c ~ ( n ) 3 ( n + l ) . . . / 3 ( 2 n ) ,  (1) 

where M is the antisymmetrizer, N is a normalization constant and Cs is the spin 
projection operator. We shall consider the case of even number of electrons 
( N - - 2 n ) ,  and the singlet states (5 ~ 0). * is a spatial (freeon) wavefunction 
which is a product of orbitals: 

�9 = u , ( 1 ) . . ,  uo(n)v,(n+l).., v.(2n).  (2) 

The PO method is obtained when u~ and v~ are formed from a set of orthogonal 
orbitals in the following way: 

u~ = cos 0i6~ + sin O~qJi, and vi = cos 0;6~ - sin 0~6~,, (3) 

where 6~ (i = 1 , . . . ,  n) is a doubly occupied orbital of the conventional single 
determinant (Hartree-Fock) wavefunction, and 6~, is a virtual orbital with which 
it is paired. For the AMO method the pairing was dictated by the alternancy 
symmetry [7, 8]. For a general system the pairing is obtained [2] by maximizing 
the sum: 

n 

C =  • (iili'i'). (4) 
i = l  

The algorithm for obtaining the paired orbitals is described in [2]. The 6~ are 
chosen as localized orbitals, and the ~i,'s occupy the same region of space as 
their partners. The ~0i,'s are also localized. 

3. The paired orbital energy expression 

In [2] we have presented the energy expression for the PO method. Since we 
need the derivatives we shall repeat the main points. Let us introduce the overlap 
integral between the ut and vi: 

(u~ [vi) = A~ = cos 20i. (5) 
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There are three important functions of the Ai which appear in the energy 
expression: 

n--q 

Aq= Y, ( - 1 ) k C ( S , k ) S k ( x l , . . . , x , ) ,  ( q = 0 , 1 , 2 ) ,  (6) 
k - 0  

where xi = A 2, C(S, k) are the spin projection (Sanibel) coefficients [9]. For the 
singlet state they are given as follows: 

k /1 

and S k ( x l , . . . ,  xn) (abbreviated as Sk) is the kth symmetric sum formed from 
Xl, . . . .  , Xn: 

S o = l ,  

S 1 = X l - ~ "  �9 . - ~ X n  ' 
(8) 

F/ 

$ 2  --~" Z X i X j '  
i<j 

S n ~- x 1 �9 . . Xn , 

A0 is the normalization integral: 

ao = (~0 I*o). (9) 

Let us divide the energy expression into two parts. The first one corresponds to 
the one-electron operators in the Hamiltonian (kinetic energy and nuclear- 
electron attraction), the second one to the two-electron operators (electron- 
electron repulsion). The one-electron part is: 

E 1 = Ela + (Elb/Ao) 

: i=1 ~ w i - A ~  i=1 ~ AwiAi~xi(Al+A~ (10) 

Here 

wi=hi+hi , ,  Awi=h i , -h i ,  (11) 

and 

h,= f O*hOidv, h,,= f O*hOi, dv, (12) 

i.e. they are the diagonal elements of the one-electron Hamiltonian over the 
occupied localized orbitals and their virtual pairs, respectively. 

The two-electron part reads as follows: 

E2 = (E2o + E2b 4- E2c)Ao-', (13) 
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where 

n 

E2a = ~ [Aii~/ii -~ Ai'i'yi'i'- Biyii, - Ci6ii,], 
i=l 

E2b = Y, [ F ( i , j ) - A ( i , j ) ] ,  
~ j  

E2~ = - ~ Z ( i , j ) .  
i <j 

F(i,j) ,  A(i , j ) ,  and Z ( i , j )  are defined as follows: 

F( i, j)  = Fijy~ + Fo,y o, + Fi,:yi,j + F~,:,Ti,:,, 

A( i, j )  = Ao.~ o. + Ao,6 o , + Ai,fi,,j + Ai'j'Si'ji', 

Z ( i , j )  = Zo~ o + Z~,~,. 
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(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

The basic two electron integrals Y0, 8~, and ffij are respectively the coulomb, 
exchange and a new kind of integral which is characteristic of the AMO and PO 
methods: 

To = (ii [jj), 6~ = (ij [ji), ~o ~ (iJ [j'i'). (20) 

The h(0) dependent factors in Eqs/(14-19) are given as follows: 

A, = (1/4)(1 + A,) 2 0-~ (A, + Ao), (21) 

Avi, = (1/4)(1 - A,) 2 ~ (A, + Ao), (22) 

0 
B~ = (1/2)(1 -A~) ~x(A~-Ao), (23) 

C, = (1 - A 2) 0-~A1, (24) 

F 0 = (1 + A,)(1 + )tj)(a + [A, + ,~j]b + AiAjc), (25) 

h~ = (1 + A~)(1 + Aj)(a + [2(A, + Aj) - 1 - )t~;tj]b + AiAjc)/2, (26) 

Z o = sin 20, sin 20j(a + b) - (1/4) sin 40i sin 40j(b + c), (27) 

Zo, = sin 20~ sin 20j(a + b) + (1/4) sin 40~ sin 40j(b + e), (28) 

where 

0 2 (9 2 0 2 

a = - - A z ,  b = A1, c = - -  Ao. (29) 
OX i OXj OX i OXj OX i OXj 

From the expressions in Eqs. (25-26) one obtains the corresponding factors 
involving i' and/or  j '  by reversing the sign of the A~ and/or  ;tj. 
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4. The derivatives of the symmetric sums 

In Sect. 3 we have seen that the symmetric sums and the Aq play a central role 
in the PO energy expression. The key point in forming the derivatives of the 
energy will be to obtain expressions for the derivatives of the symmetric sums 
and the basic functions Aq'S. We shall also need the derivatives for the special 
case when all the & = 1. 

Consider first the derivatives of  Sk: 

~" S i k _ l ) ( X l , . . .  , Xn). (30)  
Oxs 

The symmetric sum Sk is linear in &, the derivative consists of k - 1  factors 
formed from x l , . . . ,  x(i_, ,  xo+~), �9 �9 �9 x,. The same expression is obtained if we 
omit from the S(k 1) the terms which contain x~: 

OSk 0 
= S(k-1) -- Xi ~ox--S(k-1)" (31) 

O& 

Using Eq. (31) iteratively we arrive at the following result: 

OS k k--I 
= ~, ( - - l )rS(k_l_r)xr i .  (32)  

OXi r=O 

The second derivative of  Sk with respect to xi is zero. Next consider the mixed 
second derivative of &:  

O 2 k - l  

ox, o-- j sk = r=oE ( - 1 )  r &-,-rX; 

k-2 k-2--r 
= E E ( - - l ) r+ssk-2-r -sX~X;"  (33)  

r=O s=O 

Denote r + s  = t and change the order of summation: 

0 2 k--2 
- - S k  = ~ ( - -1) tSk_2_t  X~Xj r, (34)  
Oxi Oxj ,=o r=o 

Define: 

Pt(x i ,  Xj) = ~ r t--r x i x j  �9 (35) 
r=0 

Now the final result reads as follows: 

0 2 k-2 
- - S k  = Z (-1)'Sk_2_,P,(x,, xj). (36) 
OX i ~Xj t=O 

The result can be generalized. Let us introduce: 

P , ( x , , . . . , x , ) = E . .  " E x {  . . . .  x{', ( j l + ' '  "+k = t). (37) 
J1 Jr 
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It is easy to see that  the /th derivative of  Sk is given as follows: 

OI k-1 
Sk = • (--l)'Sk-i tPt(Xl . . . .  , Xl). (38) Oxl �9 �9 �9 O x t  ~ = o  

These are the only expressions needed  for  the derivatives of  the Aq's. 

5. The values of  tile derivatives for  Ai = 1 �9 

Consider  the special case when  all 0i = 0 (or Ai = 1). We shall denote  this point  
in the pa rame te r  space by 0. The  value of  the symmetr ic  sum is given as: 

We shall need a n u m b e r  of  identities for  the sums of  the b inomia l  coefficients. 
In Eqs. (40)-(42)  we list those which will be  used later: 

k~=o(k+a)=(n+a+l)  a + l  (40) 

~=o(--1) ( a - k ) (  k a - l ) '  (41) 

n k k+b n + l  
(42) ! 

k=b k a+b+l]" 
We shall show first that  the value of  P, at 0 is given as follows: 

P,(Xl,...,Xt)o \ l - 1  " (43) 

It  is easy to obtain  the value of  P,(x~, X2)o: 

Pt(xl, X2)o = XiXj = = t + 1. (44) 
r = O  0 1 

We prove  the validity of  (43) in an inductive way. Equa t ion  (44) shows that  the 
relat ion is valid for  l = 2. Assume that  it is valid up  to I, then we show that  it is 
valid to (1 + 1). 

� 9  ~ �9 �9 , Xl)Xt+l. Pt(Xl,.. xt, X/+l) ~ - - -  Pr(x,,. '-~ (45) 
r = 0  

For  all xi = 1 we have: 

(;) 
' \ I - 1 1  " r ~ 0  

Here  we have used the b inomia l  identity (40). In the next step we show that  the 
lth derivative of  Sk is given by the fol lowing expression:  

(Ox~ .0/. n -1 
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In order to prove the validity of (47), let us use Eqs. (38) and (43): 

(OXl O-l oxlSk)o:k~l(--l)t(k__~__t)( tAVl-l~ 
' ~=o I - 1  ]" 
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(48) 

Using the binomial identity (41), we obtain (47). 

Finally we consider the derivatives of the Aq's at 0. We shall prove that it is given 
by a very simple expression: 

(Oxl .O. '. \ 1 [1\  -~ 03x A q ) o : ' ~ q )  �9 (49) 

In the proof  we shall start with the definition of the A o (Eq. (6)) and use Eq. (47): 

( OI ) ln--o(n~--l(n--l~ 
OXa'''Oxt Aq n+lk~=o\k] \ k - l ] "  o = ( 5 0 )  

After some simple algebraic manipulations we obtain: 

Aq ( n + l ) [  k:O l--q q l+ l \q ]  " OXl " " " OXl 0- ~q 
In the last step we used the binomial identity (42). It is quite remarkable that 
the final result is independent of n. 

6. Th e  der ivat ives  o f  the  e n e r g y  with  respect  to the  0 i ' s  

Let us write the energy expression in the following form: 

E = Ela + AolEr --- Ela +f(Z ) + g(O), (53) 

where 

f(A)=Ao'(E,b+E2a+E2b)=Ao'E,a, R(O)=AolE2c . (54) 

We shall see in the following that it is important to take the derivatives with 
respect to the 0/s in spite of the fact that the dominant part of the energy (E~JAo) 
can be expressed as a functions of the A/s. The reason is that (E2c/Ao) is not 
analytic in the A~'s around the point 0. 

As a first step evaluate the derivatives of  Ao: 

0Ao 0Ao 0Ao 
= - 2  sin 20~ = - 2  sin 4 0 ~ - - .  (55) 

OOi OAi Oxi 
From Eq. (55) we obtain the second derivatives: 

02A~ = 4 sin 40~ sin 02A~ 
OOi O----~j 40J Ox~ Oxj' (56) 

and 

02Ao 0Ao 
002 - - 8  cos 40i--0x, (57) 

Observe that 02Ao/Ox~ = O. 
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At the point 0 the values of these derivatives are given as follows: from Eq. (51) 
one obtains: 

p~ 
-~x//0 = 1/2. (58) 

Substituting these values into Eqs. (55)-(57) we have: 

-~]o  = O, \00, OOJo = 0, \ -~-2 ]0 = -4.  (59) 

The general expression for the derivatives of the energy with respect to 0~'s is 
obtained from Eq. (53) as follows: 

OE OE,_A_2E OAo 
O0"--~i = A~ OOi o " aOi " 

(60) 

Using Eq. (54) one obtains: 

0 E _  A_,[_2 aE,~ aE2~l  sin 2 0 i - - + - - / + A o 2 2  sin 4o~OA~ (61) 
OOi- o [ ahi  OOi J ax~ 

In order to investigate the behavior of the energy around the point 0, let us 
consider separately OE2c/O0~. It is evident from Eq. (61) that the other terms 
vanish at this point. The essential part in OE2ffO0~ is the expression: 

= [ 20 OZ~ OXk sin 20~ sin - - - -  03(A2+A1) 

OOk OOk _ 'Y Ox~ Oxj Oxk 

- ( 1 / 4 )  sin 40~ sin 40j ~ - k r i , j .  (62) 
Ox~ Oxj OXk J' 

The corresponding expression for Z~j, is obtained by changing the sign of the 
second term. It is easy to see that for all 0~ = 0 both expressions vanish. The same 
is true for aZ~k/aOk and aZ~k,/OOk. The final conclusion is that 0 is an extremum 
point for the energy as a function of the 0~'s. 

The nature of the extremum can be investigated considering the second deriva- 
tives. From Eq. (60) one obtains: 

02E O2 Er oA0 /aE, OA,\ 02Ao 
2 1 ----~/- ao2E, (63) 002=Ao I 002 2Ao - ~ / ~ - ~ - / - E ,  Ao OOi] 002i " 

Using Eq. (59) and the fact that (A0)o = 1 one obtains: 

0 r 
\ ~ 2 ] o  = (-~i2)o + 4(E,)o. (64) 

Using the explicit form of E, and the results obtained in Sects. 4-5 one obtains 
finally a remarkably simple end result for the second derivatives at the point 0: 

"~i]o = --4ai,,, \ ~ , ] o  -4;~ (65) 
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T h e  essen t ia l  p o i n t  is t ha t  al l  t he  e l e m e n t s  o f  the  H e s s i a n  m a t r i x  are  nega t ives ,  

a n d  thus ,  i f  we  v a r y  the  0 / s  a r o u n d  the  H a r t r e e - F o c k  l imi t  we  shal l  ce r t a in ly  be  

ab le  to m a k e  i m p r o v e m e n t  in the  energy .  

7. Discussion 

T h e  essen t i a l  resul ts  o f  the  p a p e r  a r e c o n t a i n e d  in Sects .  4 a n d  5. By us ing  these  

resul t s  o n e  can  o b t a i n  t he  de r iva t ives  o f  t he  e n e r g y  e x p r e s s i o n  wi th  r e spec t  to 

the  n o n l i n e a r  p a r a m e t e r s  (0i 's) .  I t  was  e s p e c i a l l y  in t e re s t ing  to o b t a i n  the  va lue  

o f  t he  first a n d  s e c o n d  de r iva t i ve s  at the  H a r t r e e - F o c k  l imit .  
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